47 research outputs found

    Computational analysis of gene expression space associated with metastatic cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prostate carcinoma is among the most common types of cancer affecting hundreds of thousands people every year. Once the metastatic form of prostate carcinoma is documented, the majority of patients die from their tumors as opposed to other causes. The key to successful treatment is in the earliest possible diagnosis, as well as understanding the molecular mechanisms of metastatic progression. A number of recent studies have identified multiple biomarkers for metastatic progression. However, most of the studies consider only direct comparison between metastatic and non-metastatic classes of samples.</p> <p>Results</p> <p>We propose an alternative concept of analysis that considers the entire multidimensional space of gene expression and identifies the partition of this space in which metastatic development is possible. To apply this concept in cancer gene expression studies we utilize a modification of high-dimension natural taxonomy algorithm FOREL. Our analysis of microarray data containing primary and metastatic cancer samples has revealed not only differentially expressed genes, but also relations between different groups of primary and metastatic cancer. Metastatic samples tend to occupy a distinct partition of gene expression space. Further pathway analysis suggests that this partition is delineated by a specific pattern of gene expression in cytoskeleton remodeling, cell adhesion and apoptosis/cell survival pathways. We compare our findings with both report of original analysis and recent studies in molecular mechanism of metastasis.</p> <p>Conclusion</p> <p>Our analysis indicates a single molecular mechanism of metastasis. The new approach does not contradict previously reported findings, but reveals important details unattainable with traditional methodology.</p

    Improving trading saystems using the RSI financial indicator and neural networks.

    Get PDF
    Proceedings of: 11th International Workshop on Knowledge Management and Acquisition for Smart Systems and Services (PKAW 2010), 20 August-3 September 2010, Daegu (Korea)Trading and Stock Behavioral Analysis Systems require efficient Artificial Intelligence techniques for analyzing Large Financial Datasets (LFD) and have become in the current economic landscape a significant challenge for multi-disciplinary research. Particularly, Trading-oriented Decision Support Systems based on the Chartist or Technical Analysis Relative Strength Indicator (RSI) have been published and used worldwide. However, its combination with Neural Networks as a branch of computational intelligence which can outperform previous results remain a relevant approach which has not deserved enough attention. In this paper, we present the Chartist Analysis Platform for Trading (CAST, in short) platform, a proof-of-concept architecture and implementation of a Trading Decision Support System based on the RSI and Feed-Forward Neural Networks (FFNN). CAST provides a set of relatively more accurate financial decisions yielded by the combination of Artificial Intelligence techniques to the RSI calculation and a more precise and improved upshot obtained from feed-forward algorithms application to stock value datasets.This work is supported by the Spanish Ministry of Industry, Tourism, and Commerce under the EUREKA project SITIO (TSI-020400-2009-148), SONAR2 (TSI-020100-2008-665 and GO2 (TSI-020400-2009-127). Furthermore, this work is supported by the General Council of Superior Technological Education of Mexico (DGEST). Additionally, this work is sponsored by the National Council of Science and Technology (CONACYT) and the Public Education Secretary (SEP) through PROMEP.Publicad

    Probabilistic Solution of Zadeh’s Test Problems

    No full text
    Zadeh posed several Computing with Words (CWW) test problems such as: “What is the probability that John is short?” These problems assume a given piece of information in the form of membership functions for linguistic terms including tall, short, young, middle-aged, and the probability density functions of age and height. This paper proposes a solution that interprets Zadeh’s solution for these problems as a solution in terms of probability spaces as defined in the probability theory. This paper also discusses methodological issues of relations between concepts of probability and fuzzy sets

    Visual Data Mining and Discovery in Multivariate Data Using Monotone n-D Structure

    No full text
    Visual data mining (VDM) is an emerging research area of Data Mining and Visual Analytics gaining a deep visual understanding of data. A border between patterns can be recognizable visually, but its analytical form can be quite complex and difficult to discover. VDM methods have shown benefits in many areas, but these methods often fail in visualizing highly overlapped multidimensional data and data with little variability. We address this problem by combining visual techniques with the theory of monotone Boolean functions and data monotonization. The major novelty is in visual presentation of structural relations between n-dimensional objects instead of traditional attempts to visualize each attribute value of n-dimensional objects. The method relies on n-D monotone structural relations between vectors. Experiments with real data show advantages of this approach to uncover a visual border between malignant and benign classes

    Intelligible Machine Learning and Knowledge Discovery Boosted by Visual Means

    No full text
    Intelligible machine learning and knowledge discovery are important for modeling individual and social behavior, user activity, link prediction, community detection, crowd-generated data, and others. The role of the interpretable method in web search and mining activities is also very significant to enhance clustering, classification, data summarization, knowledge acquisition, opinion and sentiment mining, web traffic analysis, and web recommender systems. Deep learning success in accuracy of prediction and its failure in explanation of the produced models without special interpretation efforts motivated the surge of efforts to make Machine Learning (ML) models more intelligible and understandable. The prominence of visual methods in getting appealing explanations of ML models motivated the growth of deep visualization, and visual knowledge discovery. This tutorial covers the state-of-the-art research, development, and applications in the area of Intelligible Knowledge Discovery, and Machine Learning boosted by Visual Means
    corecore